Classifying spatial patterns of brain activity with machine learning methods: application to lie detection.
نویسندگان
چکیده
Patterns of brain activity during deception have recently been characterized with fMRI on the multi-subject average group level. The clinical value of fMRI in lie detection will be determined by the ability to detect deception in individual subjects, rather than group averages. High-dimensional non-linear pattern classification methods applied to functional magnetic resonance (fMRI) images were used to discriminate between the spatial patterns of brain activity associated with lie and truth. In 22 participants performing a forced-choice deception task, 99% of the true and false responses were discriminated correctly. Predictive accuracy, assessed by cross-validation in participants not included in training, was 88%. The results demonstrate the potential of non-linear machine learning techniques in lie detection and other possible clinical applications of fMRI in individual subjects, and indicate that accurate clinical tests could be based on measurements of brain function with fMRI.
منابع مشابه
Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کاملDetection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine
Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملInvestigating the Effect of Music on Spatial Learning in a Virtual Reality Task
Background: Spatial learning and navigation is a fundamental cognitive ability consisting of multiple cognitive components. Despite intensive efforts conducted with the assistance of virtual reality technology and functional Magnetic Resonance Imaging (fMRI) modality, the music effect on this cognition and the involved neuronal mechanisms remain elusive. Objectives: We aimed to investigate the...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 28 3 شماره
صفحات -
تاریخ انتشار 2005